Finite Element Modeling of Transient Wave Phenomena at Solid/Fluid Interfaces

Thumbnail Image
Date
1996
Authors
Xue, T.
Lord, W.
Udpa, S.
Udpa, L.
Mina, Mani
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Mina, Mani
Teaching Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The solid/fluid interface appears in many ultrasonic measurement systems. Models for the system must take account of the interface. Analytical models for wave phenomena at the interface (especially curved interfaces) are either difficult or subject to severe approximation. The finite element method is ideal for this especially when the problem domain is bounded. A survey of this subject has been given by Kalinowski [1]. In this paper, an axisymmetric finite element model is developed for a solid medium and a fluid medium in contact. Displacement is used as the primary variable in the solid media and pressure in the fluid. The scalar pressure in the fluid medium makes the total degrees of freedom less than if displacement is used. The global mass matrix and stiffness matrix are rendered symmetric by introducing a potential variable for the fluid medium [2]. The final finite element equations are solved by the explicit integration approach.

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1996