Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

A number of industries have been traditional users of eddy-current technology in nondestructive evaluation (NDE). The traditional mode of eddy-current inspection has been ‘monostatic,’ in which a single probe is used as both a ‘transmitter’ and ‘receiver’ Research in these industries now indicates the value of using ‘bistatic,’ or even ‘multistatic’ probe configurations, in which a single probe is used as a transmitter, and one or more probes are used as receivers. The probes may be either air core, or ferrite core, or perhaps a combination. Some examples of bistatic configurations are the split-core differential probe, and remote-field probes. The industry is turning to computer codes that are based on sophisticated computational electromagnetics algorithms in order to design these probes, and to interpret the signals that arise from the interaction of these probes with flaws.

Volume

15A

Chapter

Chapter 1: Standard Techniques

Section

Eddy Currents

Pages

331-338

DOI

10.1007/978-1-4613-0383-1_42

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Recent Developments in Modeling Eddy-Current Probe-Flaw Interactions

Seattle, WA

A number of industries have been traditional users of eddy-current technology in nondestructive evaluation (NDE). The traditional mode of eddy-current inspection has been ‘monostatic,’ in which a single probe is used as both a ‘transmitter’ and ‘receiver’ Research in these industries now indicates the value of using ‘bistatic,’ or even ‘multistatic’ probe configurations, in which a single probe is used as a transmitter, and one or more probes are used as receivers. The probes may be either air core, or ferrite core, or perhaps a combination. Some examples of bistatic configurations are the split-core differential probe, and remote-field probes. The industry is turning to computer codes that are based on sophisticated computational electromagnetics algorithms in order to design these probes, and to interpret the signals that arise from the interaction of these probes with flaws.