Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

Ultrasonic inspection is used to confirm that there are no defects of concern in various regions of a nuclear reactor primary circuit. All materials are naturally anisotropic, but if the grains are small relative to the ultrasonic wavelength and are also randomly oriented, then the material will appear as homogeneous and isotropic as in ferritic steel. The ultrasonic wavelength is chosen as a compromise between resolution of defect size and acoustic noise from grain boundaries. In austenitic steel, the wavelength chosen will typically be smaller than the grain size, at least in one direction. The grains are not randomly oriented but exhibit macroscopic patterns which depend on the welding process, and the material is neither homogeneous nor isotropic.

Volume

15A

Chapter

Chapter 1: Standard Techniques

Section

Elastic Waves

Pages

41-48

DOI

10.1007/978-1-4613-0383-1_5

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Elastic Wave Diffraction at Cracks in Anisotropic Materials

Seattle, WA

Ultrasonic inspection is used to confirm that there are no defects of concern in various regions of a nuclear reactor primary circuit. All materials are naturally anisotropic, but if the grains are small relative to the ultrasonic wavelength and are also randomly oriented, then the material will appear as homogeneous and isotropic as in ferritic steel. The ultrasonic wavelength is chosen as a compromise between resolution of defect size and acoustic noise from grain boundaries. In austenitic steel, the wavelength chosen will typically be smaller than the grain size, at least in one direction. The grains are not randomly oriented but exhibit macroscopic patterns which depend on the welding process, and the material is neither homogeneous nor isotropic.