Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

Recent research efforts aimed at improving the detection of hard-alpha inclusions have emphasized the need for accurately modeling the responses from such weakly-reflecting inclusions. The need arises because of the rare natural occurrence of hard-alpha inclusions, and consequently, the lacks of suitable experimental samples. These difficulties lend impetus to the application of signal modeling to augment and extend the experimental data in assessing detectability. Currently, a new approach is being developed for the purpose of predicting time-domain echoes from inclusions of specified morphology. This work is the continuation of our previous study of flat-bottomed holes [1–2] in constructing a methodology for estimating the probability of detection of flaws in titanium alloys based on a combination of physical and statistical models.

Volume

15A

Chapter

Chapter 1: Standard Techniques

Section

Elastic Waves

Pages

49-55

DOI

10.1007/978-1-4613-0383-1_6

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Modeling of Ultrasonic Signals from Weak Inclusions

Seattle, WA

Recent research efforts aimed at improving the detection of hard-alpha inclusions have emphasized the need for accurately modeling the responses from such weakly-reflecting inclusions. The need arises because of the rare natural occurrence of hard-alpha inclusions, and consequently, the lacks of suitable experimental samples. These difficulties lend impetus to the application of signal modeling to augment and extend the experimental data in assessing detectability. Currently, a new approach is being developed for the purpose of predicting time-domain echoes from inclusions of specified morphology. This work is the continuation of our previous study of flat-bottomed holes [1–2] in constructing a methodology for estimating the probability of detection of flaws in titanium alloys based on a combination of physical and statistical models.