Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

We have developed precise thermal NDE as a wide-area inspection tool to quantify structural damage within airframes and bridge decks. We used infrared cameras and image processing to produce precise temperature, thermal inertia, and cooling-rate maps of flash-heated aircraft skins. These maps allowed us to distinguish major structural defects from minor flaws which do not warrant costly repairs. We quantified aircraft skin corrosion defects with metal losses as low as 5% with 3% overall uncertainty [1–6]. We proved the feasibility of precise thermal NDE to inspect naturally-heated asphalt-concrete bridge decks. To this end, we quantified structural damage within asphalt-concrete slabs by locating the sites, and determining the relative volumes, of concrete displacements from 2-inch deep and 4-inch deep synthetic delaminations in asphalt-concrete slabs [4–8].

Volume

15A

Chapter

Chapter 1: Standard Techniques

Section

Thermal Techniques

Pages

525-531

DOI

10.1007/978-1-4613-0383-1_67

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Precise Thermal NDE for Quantifying Structural Damage

Seattle, WA

We have developed precise thermal NDE as a wide-area inspection tool to quantify structural damage within airframes and bridge decks. We used infrared cameras and image processing to produce precise temperature, thermal inertia, and cooling-rate maps of flash-heated aircraft skins. These maps allowed us to distinguish major structural defects from minor flaws which do not warrant costly repairs. We quantified aircraft skin corrosion defects with metal losses as low as 5% with 3% overall uncertainty [1–6]. We proved the feasibility of precise thermal NDE to inspect naturally-heated asphalt-concrete bridge decks. To this end, we quantified structural damage within asphalt-concrete slabs by locating the sites, and determining the relative volumes, of concrete displacements from 2-inch deep and 4-inch deep synthetic delaminations in asphalt-concrete slabs [4–8].