Location

Brunswick, ME

Start Date

1-1-1997 12:00 AM

Description

Because of the awkward and somewhat irregular shape of the weldment, conventional methods [1] could not be adapted to the nondestructive measurement of GTAW edge weld penetration on clamshell-style catalytic converters and a special inspection system based on the electric current deflection method was developed. DC or low-frequency AC electric resistance measurements, also known as the Potential Drop Method (PDM), are well-developed for plate thickness assessment and crack detection [2–6]. The operating principle of these methods is that, under certain arrangement of the electrodes, the defect or crack in a conducting specimen will cause a measurable increase in resistance between given points compared to the situation without the defect or crack. In recent years, this simple contact technique was largely obscured by more sophisticated noncontacting eddy-current techniques especially in industrial applications. In this article, we demonstrate the distinct advantages of the Potential Drop Method through the example of GTAW edge welds where the awkward shape of the specimens and the required large penetration depth render the eddy-current method less feasible.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

16B

Chapter

Chapter 5: Engineered Materials

Section

Bonded Joints

Pages

1199-1206

DOI

10.1007/978-1-4615-5947-4_156

Language

en

File Format

application/pdf

Included in

Manufacturing Commons

Share

COinS
 
Jan 1st, 12:00 AM

Edge Weld Penetration Assessment via Electric Current Deflection Measurements

Brunswick, ME

Because of the awkward and somewhat irregular shape of the weldment, conventional methods [1] could not be adapted to the nondestructive measurement of GTAW edge weld penetration on clamshell-style catalytic converters and a special inspection system based on the electric current deflection method was developed. DC or low-frequency AC electric resistance measurements, also known as the Potential Drop Method (PDM), are well-developed for plate thickness assessment and crack detection [2–6]. The operating principle of these methods is that, under certain arrangement of the electrodes, the defect or crack in a conducting specimen will cause a measurable increase in resistance between given points compared to the situation without the defect or crack. In recent years, this simple contact technique was largely obscured by more sophisticated noncontacting eddy-current techniques especially in industrial applications. In this article, we demonstrate the distinct advantages of the Potential Drop Method through the example of GTAW edge welds where the awkward shape of the specimens and the required large penetration depth render the eddy-current method less feasible.