Geometrical Acoustics in a Heterogeneous Anisotropic Elastic Solid: Application to a Wavy Composite

Thumbnail Image
Date
1998
Authors
Kim, Kwang Yul
Zou, Wei
Sachse, Wolfgang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Karal and Keller [1] developed the geometrical acoustics for wave propagation in a heterogeneous isotropic medium, generally adopting the methods used in geometrical optics [2,3]. It is very difficult to find a solution for wave propagation in a heterogeneous anisotropic medium. Here, instead of finding an exact solution, we extend the geometrical acoustics to a heterogeneous anisotropic medium to untangle the behavior of wave fronts spreading into an undisturbed region. The eikonal equation which contains information of the phase and group velocities, along with the transport equation which governs the amplitude of propagating waves, are derived. For a one-dimensionally heterogeneous anisotropic solid, wave propagation is two dimensional and it is possible to obtain closed-form analytic formulas for the ray path and travel time of a ray. These formulas are applied to find the path and travel time of rays generated from a pointlike source and detected by a small detector. The predicted arrival times agree well with observed values.

Comments
Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 1998