SAFT Data Processing Applied to Laser-Ultrasonic Inspection

Thumbnail Image
Date
1998
Authors
Blouin, A.
Lévesque, D.
Néron, C.
Enguehard, F.
Drolet, D.
Monchalin, J.-P.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

By relying on optics for providing the transduction of ultrasound, laser-ultrasonics brings practical solutions to a variety of nondestructive evaluation problems that cannot be solved by using conventional ultrasonic techniques based on piezoelectric transduction [1,2]. Laser-ultrasonics uses two lasers, one with a short pulse for the generation of ultrasound and another one, long pulse or continuous, coupled to an optical interferometer for detection. Laser-ultrasonics allows for testing at a large standoff distance, inspection of moving parts on production lines and inspection in hostile environments, such as the one encountered in the steel industry. The technique features also a large detection bandwidth, which is important for numerous applications, particularly involving material characterization. Another feature of laser-ultrasonics, particularly useful for inspecting parts of complex shapes, is the generation of an acoustic wave propagating normally to the surface, independently of the shape of the part and of the incidence angle of the optical generation beam. This characteristic feature occurs either when the ablation mechanism is used for generation or when light from the generation laser penetrates sufficiently deep below the surface. This last condition occurs usually with many polymer-based materials and on materials with painted surfaces.

Comments
Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 1998