Location

La Jolla, CA

Start Date

1-1-1998 12:00 AM

Description

The virtues of laser-based ultrasound [1], LBU, in general, and phased-array generation and detection in particular, have been appreciated for many years. The ability to improve the spatial resolution of an imaging system, coupled with the potential reduction in local laser intensity at a given location on a component to avoid surface damage while still realizing enhanced performance, represent but two motivating factors that have driven the community to seek methods by which to realize phased-array processing. There has been much activity in demonstrating that phased-array generation of ultrasound can lead to an enhanced directivity of the ultrasound as well as to a decrease (or, increase) in the bandwidth of the generated ultrasound (if desired), be it in the bulk or along the surface of components. Examples of such phased-array generationtechniques (either in the thermoelastic or ablative regimes) include illumination of several discrete spots or locus of points with pulsed lasers [1] on the surface of a workpiece (simultaneously or sequentially), be it a line, an annular ring, or a plurality of spots — or illumination of a scanning pattern of lines along the surface of a sample, the so-called phase-velocity scanning technique [2]. By extension of the phased-array generation concept, one is led to consider the notion of laser-based, phased-array detectionof ultrasound [3]. By reciprocity, this can lead to a receiver of higher resolution relative to a single location for the optical sensing of the ultrasound, as well as to a reduction in the local laser fluence required to achieve a given spatial performance. Moreover, one can, in principle, combine the two modes of phased-array excitation and detection to realize even greater resolution capabilities, which one may refer to as “product processing.” In this case, one has, in essence, a focusing transmitter and an imaging detector, both functioning in concert.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

17A

Chapter

Chapter 2: Emerging Technologies

Section

Laser/Optical Ultrasonics

Pages

643-650

DOI

10.1007/978-1-4615-5339-7_83

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

A New Concept for a Laser-Based Ultrasonic Phased Array Receiver Using Photo-emf Detection

La Jolla, CA

The virtues of laser-based ultrasound [1], LBU, in general, and phased-array generation and detection in particular, have been appreciated for many years. The ability to improve the spatial resolution of an imaging system, coupled with the potential reduction in local laser intensity at a given location on a component to avoid surface damage while still realizing enhanced performance, represent but two motivating factors that have driven the community to seek methods by which to realize phased-array processing. There has been much activity in demonstrating that phased-array generation of ultrasound can lead to an enhanced directivity of the ultrasound as well as to a decrease (or, increase) in the bandwidth of the generated ultrasound (if desired), be it in the bulk or along the surface of components. Examples of such phased-array generationtechniques (either in the thermoelastic or ablative regimes) include illumination of several discrete spots or locus of points with pulsed lasers [1] on the surface of a workpiece (simultaneously or sequentially), be it a line, an annular ring, or a plurality of spots — or illumination of a scanning pattern of lines along the surface of a sample, the so-called phase-velocity scanning technique [2]. By extension of the phased-array generation concept, one is led to consider the notion of laser-based, phased-array detectionof ultrasound [3]. By reciprocity, this can lead to a receiver of higher resolution relative to a single location for the optical sensing of the ultrasound, as well as to a reduction in the local laser fluence required to achieve a given spatial performance. Moreover, one can, in principle, combine the two modes of phased-array excitation and detection to realize even greater resolution capabilities, which one may refer to as “product processing.” In this case, one has, in essence, a focusing transmitter and an imaging detector, both functioning in concert.