Development of Motorized Azimuthal Scanners for Ultrasonic NDE Of Composites

Thumbnail Image
Date
1999
Authors
Fei, Dong
Hsu, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Fiber reinforced composite laminates often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence. Many of these elastic anisotropies may be investigated using ultrasound [1–6], among which angular measurements are often used. Hsu et al [3,4] used angular scan of acousto-ultrasonic signals to investigate fiber reinforced composite laminates. By placing and rotating two contact transducers on the same side of crossedplied composite laminates, the angular dependence of the acousto-ultrasonic signal was measured and found to have good correlation with the fiber orientation of the sample. Angular measurement of normal-incident shear wave has also been used to detect errors in layup sequence and ply orientation in both green (before cured) and cured composites [4–6]. The transmitted signals of normal incident shear wave in a “crossed polarizer” configuration were found to be particularly sensitive to ply misorientation and layup sequence in a laminate. For green composites, sandwiched between aluminum delay lines, EMATs (electro-meganetic transducer) were used so that the problem of changing coupling condition during the angular scan was avoided. This technique was believed to hold good potential as a practical NDE tool for detecting layup errors during the manufacturing process [5].

Comments
Description
Keywords
Citation
DOI
Keywords
Copyright
Fri Jan 01 00:00:00 UTC 1999