Location

Snowbird, UT, USA

Start Date

1-1-1999 12:00 AM

Description

With the increasing use of adhesives in the automotive, aerospace, and manufacturing industries, there is a growing interest in developing nondestructive methods for locating defects in adhesive bonds. While conventional techniques which utilize ultrasonic waves and Lamb waves are likely candidates for obtaining high resolution images of defects, these methods may not be practical for assembly line applications where the time required to scan the bonds and the access to the bonds are often limited. The objective of this work is to develop an approach for detecting defects in bonds that requires only a limited number of measurements of the reverberant acoustic wavefield (i.e., waves that are multiply scattered off the boundaries of the structure) made over a band of frequencies.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

18B

Chapter

Chapter 5: Engineered Materials

Section

Coatings, Interfaces, and Bonds

Pages

1517-1523

DOI

10.1007/978-1-4615-4791-4_195

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Defect Detection in Bonded Structures Using the Reverberant Wavefield

Snowbird, UT, USA

With the increasing use of adhesives in the automotive, aerospace, and manufacturing industries, there is a growing interest in developing nondestructive methods for locating defects in adhesive bonds. While conventional techniques which utilize ultrasonic waves and Lamb waves are likely candidates for obtaining high resolution images of defects, these methods may not be practical for assembly line applications where the time required to scan the bonds and the access to the bonds are often limited. The objective of this work is to develop an approach for detecting defects in bonds that requires only a limited number of measurements of the reverberant acoustic wavefield (i.e., waves that are multiply scattered off the boundaries of the structure) made over a band of frequencies.