Location

Snowbird, UT, USA

Start Date

1-1-1999 12:00 AM

Description

The textile industries of developed nations, such as the United States and the countries of western Europe, are now facing enormous competition from imported fabrics important that the textile manufactures, as well as the machine manufactures, to manufacture a machine with high output, less waste, and individual-machine automation. One of the most labor-intensive tasks in textile production is the inspection and identification of fabric defects. Although visual inspection can identify most defects, an automated or semiautomated inspection system will be more reliable, eliminate potential human errors, improve quality control, reduce waste and energy consumption, and lower operating costs. Currently, an optic/visual system is commercially available, but it is an off-loom system and is very expensive. Other techniques, for example, ultrasonic, millimeter wave, capacitance, and photo-diode, have been studied. At Argonne National Laboratory (ANL), we developed a nonvisual, noncontact fabric-inspection system that can detects defects in real-time on the loom[1]. The system is compact, rugged, and low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Unlike other available techniques, the ANL ultrasonic system is not affected by vibration generated by the weaving machine.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

18B

Chapter

Chapter 8: Process Control, Reliability, and Training

Section

Process Control

Pages

2217-2224

DOI

10.1007/978-1-4615-4791-4_284

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

On-Loom, Real-Time, Noncontact Detection of Fabric Defects by Ultrasonic Imaging

Snowbird, UT, USA

The textile industries of developed nations, such as the United States and the countries of western Europe, are now facing enormous competition from imported fabrics important that the textile manufactures, as well as the machine manufactures, to manufacture a machine with high output, less waste, and individual-machine automation. One of the most labor-intensive tasks in textile production is the inspection and identification of fabric defects. Although visual inspection can identify most defects, an automated or semiautomated inspection system will be more reliable, eliminate potential human errors, improve quality control, reduce waste and energy consumption, and lower operating costs. Currently, an optic/visual system is commercially available, but it is an off-loom system and is very expensive. Other techniques, for example, ultrasonic, millimeter wave, capacitance, and photo-diode, have been studied. At Argonne National Laboratory (ANL), we developed a nonvisual, noncontact fabric-inspection system that can detects defects in real-time on the loom[1]. The system is compact, rugged, and low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Unlike other available techniques, the ANL ultrasonic system is not affected by vibration generated by the weaving machine.