Start Date

2016 12:00 AM

Description

Recently, a novel lightweight and thin piezoelectric transducer was proposed [1-3]. It generates in-plane surface tractions and thus shear horizontal elastic waves in both bulk materials and waveguides. The paper describes the principle of operation of this Shear Horizontal Piezoelectric Fiber Patch (SH-PFP). In continuation of the previous work, several variants of the SH-PFP are studied. The generated wavefield is characterized bywavefield snapshots and directivity functions. Both numerical simulation and measurements by 3D Laser Vibrometry are performed and the results are compared, showing a good agreement. We discuss possible further developments of the SH-PFP transducer to allow 1D directivity and we also discuss various possible sensor applications.

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Elastic Wave Fields Generated by Shear Horizontal Piezoelectric Fiber Patch (SH-PFP) Transducers: Parameter Study by Modelling and Laser Vibrometric Measurements

Recently, a novel lightweight and thin piezoelectric transducer was proposed [1-3]. It generates in-plane surface tractions and thus shear horizontal elastic waves in both bulk materials and waveguides. The paper describes the principle of operation of this Shear Horizontal Piezoelectric Fiber Patch (SH-PFP). In continuation of the previous work, several variants of the SH-PFP are studied. The generated wavefield is characterized bywavefield snapshots and directivity functions. Both numerical simulation and measurements by 3D Laser Vibrometry are performed and the results are compared, showing a good agreement. We discuss possible further developments of the SH-PFP transducer to allow 1D directivity and we also discuss various possible sensor applications.