Start Date

2016 12:00 AM

Description

If guided wave transducers are fabricated in an annular array type, the excitation and measurement of target guided wave modes could be considerably enhanced (see, e.g., [1]). Accordingly, various annular array transducers have been developed, including those generating omnidirectional Lamb waves in a plate. Here, we newly consider an annular array type MPT (magnetostrictive patch transducer) to generate enhanced SH (shear-horizontal) waves in a plate. This annular array MPT is based on our earlier development of an omnidirectional SH wave MPT [2]. For wave field analysis by the annular array SH wave MPT, the strain response in a plate due to wave excitation by the MPT is calculated by using the Green’s function approach [3]. Using the analysis, an optimal configuration of the annular array MPT which can maximize the transducer output at the given frequency is determined. For the validation of numerical predictions, a series of experiments with varying frequencies were carried out and the numerical results were found to be in good agreement with the experimental results.

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

An Annular Array MPT for Enhanced Generation of Omnidirectional SH Waves in a Plate

If guided wave transducers are fabricated in an annular array type, the excitation and measurement of target guided wave modes could be considerably enhanced (see, e.g., [1]). Accordingly, various annular array transducers have been developed, including those generating omnidirectional Lamb waves in a plate. Here, we newly consider an annular array type MPT (magnetostrictive patch transducer) to generate enhanced SH (shear-horizontal) waves in a plate. This annular array MPT is based on our earlier development of an omnidirectional SH wave MPT [2]. For wave field analysis by the annular array SH wave MPT, the strain response in a plate due to wave excitation by the MPT is calculated by using the Green’s function approach [3]. Using the analysis, an optimal configuration of the annular array MPT which can maximize the transducer output at the given frequency is determined. For the validation of numerical predictions, a series of experiments with varying frequencies were carried out and the numerical results were found to be in good agreement with the experimental results.