Degree Type

Dissertation

Date of Award

1993

Degree Name

Doctor of Philosophy

Department

Computer Science

First Advisor

Ken-Chih Liu

Second Advisor

Les Miller

Abstract

In this dissertation, the issues related to the information incompleteness in relational databases are explored. In general, this dissertation can be divided into two parts. The first part extends the relational natural join operator and the update operations of insertion and deletion to I-tables, an extended relational model representing inclusively indefinite and maybe information, in a semantically correct manner. Rudimentary or naive algorithms for computing natural joins on I-tables require an exponential number of pair-up operations and block accesses proportional to the size of I-tables due to the combinatorial nature of natural joins on I-tables. Thus, the problem becomes intractable for large I-tables. An algorithm for computing natural joins under the extended model which reduces the number of pair-up operations to a linear order of complexity in general and in the worst case to a polynomial order of complexity with respect to the size of I-tables is proposed in this dissertation. In addition, this algorithm also reduces the number of block accesses to a linear order of complexity with respect to the size of I-tables;The second part is related to the modeling aspect of incomplete databases. An extended relational model, called E-table, is proposed. E-table is capable of representing exclusively disjunctive information. That is, disjunctions of the form P[subscript]1\mid P[subscript]2\mid·s\mid P[subscript]n, where ǁ denotes a generalized logical exclusive or indicating that exactly one of the P[subscript]i's can be true. The information content of an E-table is precisely defined and relational operators of selection, projection, difference, union, intersection, and cartisian product are extended to E-tables in a semantically correct manner. Conditions under which redundancies could arise due to the presence of exclusively disjunctive information are characterized and the procedure for resolving redundancies is presented;Finally, this dissertation is concluded with discussions on the directions for further research in the area of incomplete information modeling. In particular, a sketch of a relational model, IE-table (Inclusive and Exclusive table), for representing both inclusively and exclusively disjunctive information is provided.

DOI

https://doi.org/10.31274/rtd-180813-13103

Publisher

Digital Repository @ Iowa State University, http://lib.dr.iastate.edu/

Copyright Owner

Lu Zhang

Language

en

Proquest ID

AAI9321231

File Format

application/pdf

File Size

219 pages

Share

COinS