Study of directionally solidified eutectics with emphasis on oscillatory instabilities

Thumbnail Image
Date
1994
Authors
Diesslin, Brenda
Major Professor
Advisor
William T. Grayhack
Kenneth Heimes
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Mathematics
Abstract

Two dimensional binary lamellar eutectics are studied through the process of mathematically modeling the Stefan-type problem associated with directionally solidified eutectic growth. A mathematical model of the boundary value problem is presented and a linear stability analysis is performed in which the triple points of the eutectic are perturbed tangential to the interface. This analysis indicates the presence of an "acoustic" mode of wavelength twice that of the lamellar spacing, generally found at low Peclet numbers. and an "optical" mode of wavelength equal to the lamellar spacing, generally found at higher Peclet numbers. Then the non-linear equations which are a result of the linear stability analysis are asymptotically analyzed and it is found that the results for the "acoustic" oscillations can be simplified; but that the asymptotics applied to the "optical" oscillations are not valid. A revision of the mathematical model is contained in a high Peclet number model for eutectics, involving slopes and partition coefficients dependent on the Peclet number. The linear stability analysis is repeated on the high Peclet number model and it is found that the earlier results change for high Peclet number oscillations such that an oscillation with a fixed wavelength occurs at a smaller velocity and a smaller concentration than originally predicted. Finally, a random walk simulation is developed from the solidification model and the boundary value problem is rewritten as a probabilistic process. The simulation results are used to demonstrate the movement of the triple points under given perturbation conditions.

Comments
Description
Keywords
Citation
Source
Copyright
Sat Jan 01 00:00:00 UTC 1994