Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Computer Science

First Advisor

Johnny S. K. Wong


Anomaly intrusion detection normally has high false alarm rates, and a high volume of false alarms will prevent system administrators identifying the real attacks. Machine learning methods provide an effective way to decrease the false alarm rate and improve the detection rate of anomaly intrusion detection. In this research, we propose a novel approach using kernel methods and Support Vector Machine (SVM) for improving anomaly intrusion detectors' accuracy. Two kernels, STIDE kernel and Markov Chain kernel, are developed specially for intrusion detection applications. The experiments show the STIDE and Markov Chain kernel based two class SVM anomaly detectors have better accuracy rate than the original STIDE and Markov Chain anomaly detectors.;Generally, anomaly intrusion detection approaches build normal profiles from labeled training data. However, labeled training data for intrusion detection is expensive and not easy to obtain. We propose an anomaly detection approach, using STIDE kernel and Markov Chain kernel based one class SVM, that does not need labeled training data. To further increase the detection rate and lower the false alarm rate, an approach of integrating specification based intrusion detection with anomaly intrusion detection is also proposed.;This research also establish a platform which generates automatically both misuse and anomaly intrusion detection software agents. In our method, a SIFT representing an intrusion is automatically converted to a Colored Petri Net (CPNs) representing an intrusion detection template, subsequently, the CPN is compiled into code for misuse intrusion detection software agents using a compiler and dynamically loaded and launched for misuse intrusion detection. On the other hand, a model representing a normal profile is automatically generated from training data, subsequently, an anomaly intrusion detection agent which carries this model is generated and launched for anomaly intrusion detection. By engaging both misuse and anomaly intrusion detection agents, our system can detect known attacks as well as novel unknown attacks.



Digital Repository @ Iowa State University,

Copyright Owner

Yanxin Wang



Proquest ID


File Format


File Size

126 pages