An FMCW radar system for short range surface contour mapping

Thumbnail Image
Date
1996
Authors
Latwesen, Annette
Major Professor
Advisor
Robert C. Brown
Robert J. Weber
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The surface of a fluidized bed combustor may be indicative of problems, such as agglomeration, occurring within the bed material. The imaging system described in this dissertation has the potential of becoming a diagnostic tool to serve this purpose. The goal of this project was to design and evaluate a radar-based, phased-array system for capturing the surface contours of static surfaces located short distances (approximately 8 ft.) from the antenna array;The energy source for the contour mapping system was a frequency modulated, continuous wave (FMCW) radar. Since the frequency of a demodulated FCMW signal is proportional to the distance to the target, the dominant frequency component of the output from the beamforming algorithm is an estimate of the distance to the surface;This dissertation describes the equipment arrangement, the noise removal methods, and the delay and sum beamforming algorithm. In addition, results for several different surface types and structures are presented and discussed. Since it is shown that this prototype system has limitations, recommendations for future modifications are also suggested.

Comments
Description
Keywords
Citation
Source
Copyright
Mon Jan 01 00:00:00 UTC 1996