Comparative genomics: multiple genome rearrangement and efficient algorithm development

Thumbnail Image
Date
2004-01-01
Authors
Wu, Shiquan
Major Professor
Advisor
Xun Gu
Zhijun Wu
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Theses & dissertations (Interdisciplinary)
Abstract

Multiple genome rearrangement by signed reversal is discussed: For a collection of genomes represented by signed permutations, reconstruct their evolutionary history by using signed reversals, i.e. find a bifurcating tree where sampled genomes are assigned to leaf nodes and ancestral genomes (i.e. signed permutations) are hypothesized at internal nodes such that the total reversal distance summed over all edges of the tree is minimized. It is equivalent to finding an optimal Steiner tree that connects the given genomes by signed reversal paths. The key for the problem is to reconstruct all optimal Steiner nodes/ancestral genomes.;The problem is NP-hard and can only be solved by efficient approximation algorithms. Various algorithms/programs have been designed to solve the problem, such as BPAnalysis, GRAPPA, grid search algorithm, MGR greedy split algorithm (Chapter 1). However, they may have expensive computational costs or low inference accuracy. In this thesis, several new algorithms are developed, including nearest path search algorithm (Chapter 2), neighbor-perturbing algorithm (Chapter 3), branch-and-bound algorithm (Chapter 3), perturbing-improving algorithm (Chapter 4), partitioning algorithm (Chapter 5), etc. With theoretical proofs, computer simulations, and biological applications, these algorithms are shown to be 2-approximation algorithms and more efficient than the existing algorithms.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2004