Degree Type

Dissertation

Date of Award

1996

Degree Name

Doctor of Philosophy

Department

Electrical and Computer Engineering

First Advisor

Steve F. Russell

Abstract

A new approach to ultrasonic NDE called spread-spectrum ultrasonic evaluation (SSUE) is investigated. It regards the ultrasonic nondestructive evaluation as an acoustic-impulse-response estimation and characterization problem. This problem has been compared with the analogous problems of radio-detection-and-ranging from communications field and the seismic exploration problem of geophysics. Out of the various options for the impulse response estimation, the continuous pseudorandom signal correlation method has been shown to be the optimum for peak-power limited systems such as the ultrasonic NDE systems. The problem of self-noise and its consequences in pseudorandom correlation systems is investigated, followed by the development of various optimum and sub-optimum approaches to self-noise elimination. After verifying the theoretical results through computer simulations, a lab-grade SSUE instrument was developed and analyzed. Also, a new, efficient method for the implementation of DSP-based correlator is developed. The application of SSUE technique to various practical NDE situations like, flaw detection, velocity/thickness measurements, attenuation measurement, global integrity assessment, etc., was investigated through various laboratory experiments. It is concluded that the SSUE technique holds great promise for all ultrasonic NDE applications where high signal attenuation results into the loss of signal-to-noise ratios beyond workable limits;SSUE employs a non-traditional approach to ultrasonic NDE that makes it more robust and powerful. One significant feature of the SSUE technique is that it overcomes the maximum average power limitation of the existing techniques. Conventional pulsed ultrasonic NDE systems are peak power limited by the transducer breakdown voltage and the average power is limited by the narrow pulse duration which is important to maintain good resolution. In certain NDE applications there are factors other than the transducer peak power limitation, which limit the amplitude of the transmitted signal. In case of medical ultrasound devices, for example, the peak power limit arises from the risk of causing tissue damage. For such kind of applications, SSUE has a direct solution to increasing the average power while maintaining the resolution. Ultrasonic NDE instrument in a field or industrial environment is subject to all kinds of acoustic and electromagnetic interferences. This results into a degradation of instrument sensitivity and reliability. SSUE technique, by virtue of its robust operating principal, is capable of interference rejection to a much larger extent.

DOI

https://doi.org/10.31274/rtd-180813-13896

Publisher

Digital Repository @ Iowa State University, http://lib.dr.iastate.edu/

Copyright Owner

Jahangir Khan Kayani

Language

en

Proquest ID

AAI9924786

File Format

application/pdf

File Size

227 pages

Share

COinS