Degree Type

Dissertation

Date of Award

2004

Degree Name

Doctor of Philosophy

Department

Biochemistry, Biophysics and Molecular Biology

First Advisor

Gloria Culver

Abstract

The prokaryotic ribosome is a 2.5 MDa particle comprised of two asymmetric subunits, the large (50S) and small (30S) subunits. The large subunit contains two RNAs (5S and 23S) in addition to thirty-four proteins. The small subunit consists of one RNA (16S rRNA) and twenty-one proteins. Although the crystal structure has been solved, much remains to be revealed concerning the assembly of this macromolecular structure. Our laboratory is focused on the assembly of the small subunit. In vitro assembly of this structure was achieved in the late 1960's and early 1970's. At low temperature when 16S rRNA and all of the small subunit proteins are incubated together, only a subset of the proteins are able to associate with the RNA and a particle termed Reconstitution Intermediate (RI, 21S) results. When RI particles are heat treated, a conformational rearrangement occurs and RI* (26S) particles result that are capable of complete assembly with the remainder of the small subunit proteins, even at low temperature, to form functional 30S subunits. In vitro 30S subunit assembly requires long incubation periods, high ionic strength, and heat treatment. In light of these strict requirements, we hypothesized that assembly factors must exist in vivo to facilitate this crucial assembly process, making it accurate and efficient. We have identified the DnaK chaperone system as one such factor. The purified DnaK chaperone system is sufficient to facilitate in vitro 30S subunit assembly at low temperature, forming 30S particles that co-sediment, have the same protein complement, bind tRNA, and participate in polyphenylalanine synthesis like 30S subunits. Additionally, the association behavior of the DnaK chaperone system components with pre-30S particles in vitro was observed and found to be very similar to their association with substrate in their well-characterized protein folding role. Lastly, it was determined that DnaK binds small subunit components in vivo, including pre-processed 16S rRNA. This is the first evidence clearly demonstrating a direct link between the DnaK chaperone system and the assembly of ribosomes in E. coli, and the first instance in which an extra-ribosomal assembly factor has been shown to facilitate 30S subunit assembly in vitro.

DOI

https://doi.org/10.31274/rtd-180813-12721

Publisher

Digital Repository @ Iowa State University, http://lib.dr.iastate.edu

Copyright Owner

Jennifer Anne Maki

Language

en

Proquest ID

AAI3217343

File Format

application/pdf

File Size

103 pages

Share

COinS