Degree Type

Thesis

Date of Award

2006

Degree Name

Master of Science

Department

Statistics

First Advisor

Derrick K. Rollins

Abstract

In process identification (i.e., dynamic model development) information on the precision and reliability of a parameter estimate is conveyed by a confidence interval. The best confidence interval is the one with the shortest width for a given level of confidence. Confidence interval widths widen as the standard error increases or as the number of estimated parameters increases. This thesis focuses on minimizing the width of confidence intervals by reducing the number of estimated dynamic parameters in the context of block-oriented modeling. This objective is accomplished by the development of a procedure that finds parameter equivalencies within (intra) and between (inter) the functional forms for the responses (i.e., outputs). It is important to recognize that the least squares estimation criterion is not valid under inter-parameter equivalency. However, the multiresponse criterion does not have this limitation and is used in this work.

DOI

https://doi.org/10.31274/rtd-180813-14237

Publisher

Digital Repository @ Iowa State University, http://lib.dr.iastate.edu

Copyright Owner

Gabrielle Lynn Larson

Language

en

Proquest ID

AAI1439856

File Format

application/pdf

File Size

60 pages

Share

COinS