Microstructure and strength of a deformation processed Al-20%Sn metal-metal composite

Thumbnail Image
Date
2003-01-01
Authors
Xu, Kai
Major Professor
Advisor
Alan M. Russell
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

An Al-20vol.% Sn metal-metal composite was deformation processed by extrusion, swaging, and wire drawing to a total true strain of 7.4, resulting in a microstructure with Sn filaments in an Al matrix. Both the size and spacing of the Sn filaments decreased as deformation processing progressed. Immediately after deformation, the Sn second phase showed a convoluted, ribbon-shaped filamentary morphology, but the Sn filaments spheroidized during prolonged storage at room temperature. The driving force for spheroidization is chemical potential gradient due to curvature difference along Sn filaments. A critical wavelength of lambda crit = 2piR can be used to determine the spheroidization tendency of Sn cylinder. When lambda > 2piR, spheroidization is predicted to occur.;The strength of these composites increased exponentially with the reduction in spacing of the Sn filaments. The relationship between UTS and deformation true strain is UTS = 72.6 exp(0.20eta). A Hall-Petch relationship between strength and filament spacing has been observed. Strengthening results from the filaments acting as barriers for dislocation motion.;The primary shape instability modes are cylinderization of ribbons, boundary splitting, spheroidization of cylinders, and edge spheroidization of ribbons. The determining factors dictating which mechanism is active are grain boundary energy, interfacial energy, and ribbon cross section aspect ratio.;The fiber texture was determined by orientation imaging microscopy to be <100> for Al and <001> for Sn. The 290 MPa ultimate tensile strength of the composite was greater than the rule-of-mixtures prediction. Comparisons are made with Al-Nb, Al-Ti and Al-Mg deformation processed metal metal composites and to various strengthening models for metal-metal composites.

Comments
Description
Keywords
Citation
Source
Copyright
Wed Jan 01 00:00:00 UTC 2003