Computational fluid dynamics simulation of fluidized bed polymerization reactors

Thumbnail Image
Date
2006-01-01
Authors
Fan, Rong
Major Professor
Advisor
Rodney O. Fox
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

In this research, a CFD algorithm for simulation of fluidized bed polymerization reactors is described. In order to properly model the evolution of a polydisperse solid phase, population balance equation (PBE) must be solved along with other transport equations. A novel approach---DQMOM is applied to polydisperse fluidized bed to simulate particle aggregation and breakage in the reactors. Two different aggregation and breakage kernels are tested and the performance of the DQMOM approximation with different numbers of nodes are compared. Results show that the approach is very effective in modeling solid segregation and elutriation and in tracking the evolution of the PSD, even though it requires only a small number of scalars. After successfully developed DQMOM-multi-fluid CFD model, the multi-fluid model is validated with available experiments and discrete particle simulation (DPS). The results show good agreements with experiment data for binary system and DPS reults, and the simulations can describe segregation and mixing behavior in the fluidized bed;After the model development and validation, 2D and 3D simulations are conducted for a pilot-scale polymerization fluidized bed at operating conditions. Significant differences are observed between 2D and 3D simulations. The results shows that, for an industrial-scale fluidized bed, only 3D simulations are able to match the statics (bed height and pressure drop) and the dynamics (pressure power spectra) properties of the bed. The residence time for a polyethylene pilot reactor is on the order of hours, and the time scale for the fluid dynamics in the bed is on the seconds. It is impossible to run a three-dimensional simulation for hours using current CFD codes. Due to the time scale problem, a chemical reaction engineering model based on the age of particles is combined with multi-fluid model to initialize the fluidized bed to a steady state. Direct quadrature method of moments (DQMOM) is used to simulate the particle size distribution in the bed. The hot spots in the fluidized bed are also investigated using CFD simulations.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2006