Degree Type

Dissertation

Date of Award

2005

Degree Name

Doctor of Philosophy

Department

Chemistry

First Advisor

Marc D. Porter

Abstract

This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules;The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM;The next study describes a low-level detection of Escherichia coli O157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal;An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface;The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled lambda-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, lambda-DNA concentration, and domain size was investigated. This work also revealed the potential importance of structural defects.

DOI

https://doi.org/10.31274/rtd-180813-15397

Publisher

Digital Repository @ Iowa State University, http://lib.dr.iastate.edu/

Copyright Owner

Hye-Young Park

Language

en

Proquest ID

AAI3200452

File Format

application/pdf

File Size

118 pages

Share

COinS