Semi-automatic transfer function generation for non-domain specific direct volume rendering

Thumbnail Image
Date
2006-01-01
Authors
Menz, Andrew
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

The field of volume rendering is focused on the visualization of three-dimensional data sets. Although it is predominantly used in biomedical applications, volume rendering has proven useful in fields such as meteorology, physics, and fluid dynamics as a means of analyzing features of interest in three-dimensional scalar fields. The features visualized by volume rendering differ by application, though most applications focus on providing the user with a model for understanding the physical structure represented in the data such as materials or the boundaries between materials. One form of volume rendering, direct volume rendering (DVR), has proven to be a particularly powerful tool for visualizing material and boundary structures represented in volume data through the use of transfer functions which map each unit of the data to optical properties such as color and opacity. Specifying these transfer functions in a manner that yields an informative rendering is often done manually by trial and error and has become the topic of much research. While automated techniques for transfer function creation do exist, many rely on domain-specific knowledge and produce less informative renderings than those generated by manually constructed transfer functions. This thesis presents a novel extension to a successful semi-automated transfer function technique in an effort to minimize the time and effort required in creation of informative transfer functions. In particular, the method proposed provides a means for the semi-automatic generation of transfer functions which highlight and classify material boundaries in a non-domain specific manner.

Comments
Description
Keywords
Citation
Source
Copyright
Sun Jan 01 00:00:00 UTC 2006