Ultrasonic nondestructive evaluation of impact-damaged thermoset and thermoplastic composite laminates

Thumbnail Image
Date
1989
Authors
Lucht, Brad
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

The aerospace industry, driven by a demand to reduce weight, has relied increasingly on composite materials to increase performance of advanced systems. However, impacts by foreign objects such as runway debris can damage composite components without leaving indentations or other visually identifiable marks. Microcracking of the matrix, fiber pullout, and delaminations are among the types of resultant internal damage that can weaken the structure and affect the ultimate load strength as well as fatigue life. The field of nondestructive evaluation (NDE) provides a means for the detection and evaluation of barely visible impact damage. In this study glass/epoxy, carbon/epoxy, and carbon/thermoplastic material systems were evaluated ultrasonically after being struck at low impact energy levels. Laminates were impacted following NASA specifications; two different clamped impact boundaries were evaluated. Impact energies were varied by adjusting the drop height or the mass of the impactor. Impact events were recorded with a video camera and the energetics were obtained from the video tape; these included the incident and rebound energy and velocity. The energy dissipated in the laminate as a consequence of the impact can therefore be determined. The total delamination area, as summed over all the ply interfaces through the thickness of the laminate, was determined from ultrasonic scans and then quantitatively correlated to the energy dissipated in the laminate. A destructive deplying technique was applied to woven laminates to obtain the size and morphology of the impact delaminations. These results were compared to NDE results. The ability of delaminations to block ultrasound and the resulting shadowing effects were investigated. Finally, the impact resistance of a thermoset system (carbon/epoxy) and a thermoplastic system (carbon/PPS) were compared and no significant difference was found.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 1989