Neural network based iterative algorithms for solving electromagnetic NDE inverse problems

Thumbnail Image
Date
2002-01-01
Authors
Ramuhalli, Pradeep
Major Professor
Advisor
Lalita Udpa
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

The solution of inverse problems is of interest in a variety of applications ranging from geophysical exploration to medical diagnosis and non-destructive evaluation (NDE). Electromagnetic methods are often used in the nondestructive inspection of conducting and ferromagnetic materials. A crucial problem in electromagnetic NDE is signal inversion wherein the defect parameters must be recovered from the measured signals. Iterative algorithms are commonly used to solve this inverse problem. Typical iterative inversion approaches use a numerical forward model to predict the measurement signal for a given defect profile. The desired defect profile can then be found by iteratively minimizing a cost function. The use of numerical models is computationally expensive, and therefore, alternative forward models need to be explored. This thesis proposes neural network based forward models in iterative inversion algorithms for solving inverse problems in NDE.;This study proposes two different neural network based iterative inverse problem solutions. In addition, specialized neural networks forward models that closely model the physical processes in electromagnetic NDE are proposed and used in place of numerical forward models. The first approach uses basis function networks (radial basis function (RBFNN) and wavelet basis function (WBFNN)) to approximate the mapping from the defect space to the signal space. The trained networks are then used in an iterative algorithm to estimate the profile given the measurement signal. The second approach proposes the use of two networks in a feedback configuration. This approach stabilizes the solution process and provides a confidence measure of the inversion result. Furthermore, specialized finite element model based neural networks (FENN) are proposed to model the forward problem. These networks are derived from conventional finite element models and offer several advantages over conventional numerical models as well as neural network based forward models. These neural networks are then applied in an iterative algorithm to solve the inverse problem. Results of applying these algorithms to several examples including synthetic magnetic flux leakage (MFL) data are presented.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2002