Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Chemical and Biological Engineering

First Advisor

Kurt R. Hebert


In the first part, a mathematical model was developed for oxide thickness and faradaic current, assuming high-field conduction and a uniform oxide layer thickness, and incorporating as input the measured potential. Electrochemical current and potential transients were measured during anodic oxidation of aluminum. The ratio of the experimental faradaic current density to the predicted one using high field model, p, was calculated. The measured faradaic current is about 104 times smaller than that predicted by this model initially, but the two converge after the initial period of time when p approaches 1. This discrepancy may be caused by several reasons. Our nonuniform oxide thickness hypothesis was supported by: similar p~x characteristics for the same film obtained from different polarization experiments, where x is the solid-state barrier layer thickness of the oxide film; model's capability of predicting film structure change due to pretreatment such as NaOH dissolution, H2SO4 immersion, and electropolishing; the capacity of predicting long-time current decays using high field model; the lower anodic current of the foils subjected a short anodic pulse previously.;In the second part, the effect of H3PO4 immersion on pit nucleation on aluminum during anodic etching in hot HCl solution was investigated. It was found that the phosphoric acid immersion dramatically enhances the susceptibility of aluminum foil to anodic pitting corrosion, and the trend of the pit number density with the immersion time corresponds to decrease of surface oxide film thickness. AFM observation of the topography of foils which were experienced phosphoric acid treatment followed by oxide stripping in chromic-phosphoric acid solution revealed presence of cavities. PAS measurements show the existence of interfacial voids of nm dimensions, whose metallic surface is oxide-free. These defects can be introduced by electropolishing and H3PO4 immersion. The strong similarity between the surface cavities and the pits in terms of size, shape, and distribution suggests that interfacial voids may serve as pitting initiation sites. A phenomenological mechanism for pitting precursor site was proposed.



Digital Repository @ Iowa State University,

Copyright Owner

Huiquan Wu



Proquest ID


File Format


File Size

112 pages