Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Electrical and Computer Engineering

First Advisor

Arun K. Somani


Wavelength Division Multiplexing (WDM) using wavelength routing has emerged as the dominant technology for use in wide area and metropolitan area networks. Traffic demands in networks today are characterized by dynamic, heterogeneous flows. While each wavelength has transmission capacity at gigabit per second rates, users require connections at rates that are lower than the full wavelength capacity. In this thesis, we explore network design and operation methodologies to improve the network utilization and blocking performance of wavelength routing networks which employ a layered architecture with electronic and optical switching. First we provide an introduction to first generation SONET/SDH networks and wavelength routing networks, which employ optical crossconnects. We explain the need and role of wavelength conversion in optical networks and present an algorithm to optimally place wavelength conversion devices at the network nodes so as to optimize blocking performance. Our algorithm offers significant savings in computation time when compared to the exhaustive method.;To make the network viable and cost-effective, it must be able to offer sub-wavelength services and be able to pack these services efficiently onto wavelengths. The act of multiplexing, demultiplexing and switching of sub-wavelength services onto wavelengths is defined as traffic grooming. Constrained grooming networks perform grooming only at the network edge. Sparse grooming networks perform grooming at the network edge and the core. We study and compare the effect of traffic grooming on blocking performance in such networks through simulations and analyses. We also study the issue of capacity fairness in such networks and develop a connection admission control (CAC) algorithm to improve the fairness among connections with different capacities. We finally address the issues involved in dynamic routing and wavelength assignment in survivable WDM grooming networks. We develop two schemes for grooming primary and backup traffic streams onto wavelengths: Mixed Primary-Backup Grooming Policy (MGP) and Segregated Primary-Backup Grooming Policy (SGP). MGP is useful in topologies such as ring, characterized by low connectivity and high load correlation and SGP is useful in topologies, such as mesh-torus, with good connectivity and a significant amount of traffic switching and mixing at the nodes.



Digital Repository @ Iowa State University,

Copyright Owner

Sashisekaran Thiagarajan



Proquest ID


File Format


File Size

122 pages