Degree Type

Dissertation

Date of Award

2003

Degree Name

Doctor of Philosophy

Department

Physics and Astronomy

First Advisor

Kai-Ming Ho

Abstract

In this work, we try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. We found a strong correlation between amino acid sequence and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition.;In the first part, we give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part include discussions of interactions among amino acids residues, lattice HP model, and the designablity principle.;In the second part, we try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in our eigenvector study of protein contact matrix. We believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains.;In the third part, we discuss a threading method based on the correlation between amino acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction.;In the appendix, we list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

DOI

https://doi.org/10.31274/rtd-180813-14248

Publisher

Digital Repository @ Iowa State University, http://lib.dr.iastate.edu

Copyright Owner

Haibo Cao

Language

en

Proquest ID

AAI3118215

File Format

application/pdf

File Size

97 pages

Share

COinS