New palladium-catalyzed approaches to heterocycles and carbocycles

Thumbnail Image
Date
2004-01-01
Authors
Huang, Qinhua
Major Professor
Advisor
Richard C. Larock
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields.;The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products.;Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields.;Novel palladium migration/arylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed C-H activation reactions parallel electrophilic aromatic substitution.;A relatively efficient synthesis of cyclopropanes has been developed using palladium-catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a single step. This method involves the palladium-catalyzed activation of relatively unreactive C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolo[1,2-a]indoles, analogues of the mitomycin antibiotics.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2004