Agreement graphs and data dependencies

Thumbnail Image
Date
1988
Authors
Leuchner, John
Major Professor
Advisor
Giora Slutzki
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

The problem of deciding whether a join dependency [R] and a set F of functional dependencies logically imply an embedded join dependency [S] is known to be NP-complete. It is shown that if the set F of functional dependencies is required to be embedded in R, the problem can be decided in polynomial time. The problem is approached by introducing agreement graphs, a type of graph structure which helps expose the combinatorial structure of dependency implication problems. Agreement graphs provide an alternative formalism to tableaus and extend the application of graph and hypergraph theory in relational database research;Agreement graphs are also given a more abstract definition and are used to define agreement graph dependencies (AGDs). It is shown that AGDs are equivalent to Fagin's (unirelational) embedded implicational dependencies. A decision method is given for the AGD implication problem. Although the implication problem for AGDs is undecidable, the decision method works in many cases and lends insight into dependency implication. A number of properties of agreement graph dependencies are given and directions for future research are suggested.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 1988