Campus Units
Statistics
Document Type
Article
Publication Version
Published Version
Publication Date
2-2016
Journal or Book Title
Journal of Experimental Botany
Volume
67
Issue
4
First Page
1095
Last Page
1107
DOI
10.1093/jxb/erv453
Abstract
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were ‘transcriptional regulation’ and ‘hormone metabolism’, indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars.
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Copyright Owner
The Authors
Copyright Date
2015
Language
en
File Format
application/pdf
Recommended Citation
Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; and Hochholdinger, Frank, "Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit" (2016). Statistics Publications. 184.
https://lib.dr.iastate.edu/stat_las_pubs/184
Included in
Agriculture Commons, Agronomy and Crop Sciences Commons, Genetics and Genomics Commons, Hydrology Commons, Soil Science Commons
Comments
This article is published as Opitz, Nina, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Ronny Brandt, Hans-Peter Piepho, Dan Nettleton, and Frank Hochholdinger. "Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit." Journal of Experimental Botany 67, no. 4 (2015): 1095-1107. doi: 10.1093/jxb/erv453.