Distinct Peripheral Blood RNA Responses to Salmonella in Pigs Differing in Salmonella Shedding Levels: Intersection of IFNG, TLR and miRNA Pathways

Thumbnail Image
Date
2011-12-01
Authors
Huang, Ting-Hua
Uthe, Jolita
Bearson, Shawn
Demirkale, Cumhur Yusuf
Nettleton, Dan
Knetter, Susan
Christian, Curtis
Ramer-Tait, Amanda
Wannemeuhler, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Nettleton, Dan
Department Chair and Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Journal Issue
Is Version Of
Versions
Series
Department
Animal ScienceStatisticsVeterinary Microbiology and Preventive Medicine
Abstract

Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonellashedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread.

Comments

This article is published as Huang T-H, Uthe JJ, Bearson SMD, Demirkale CY, Nettleton D, et al. (2011) Distinct Peripheral Blood RNA Responses to Salmonella in Pigs Differing in Salmonella Shedding Levels: Intersection of IFNG, TLR and miRNA Pathways. PLoS ONE 6(12): e28768. doi: 10.1371/journal.pone.0028768.

Description
Keywords
Citation
DOI
Copyright
Collections