Campus Units
Statistics
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
2018
Journal or Book Title
Quality Technology and Quantitative Management
Volume
15
Issue
3
First Page
374
Last Page
392
DOI
10.1080/16843703.2016.1226594
Abstract
In this paper, we propose methods to calculate exact factors for two-sided control-the-centre and control-both-tails tolerance intervals for the (log)-location-scale family of distributions, based on complete or Type II censored data. With Type I censored data, exact factors do not exist. For this case, we developed an algorithm to compute approximate factors. Our approaches are based on Monte Carlo simulations. We also provide algorithms for computing TIs that control the probability in both tails of a distribution. A simulation study for Type I censored data shows that the estimated coverage probability is close to the nominal confidence level when the expected number of uncensored observations is moderate to large. We illustrate the methods with applications using different combinations of distributions and types of censoring.
Copyright Owner
Taylor & Francis
Copyright Date
2018
Language
en
File Format
application/pdf
Recommended Citation
Yuan, Miao; Hong, Yili; Escobar, Luis A.; and Meeker, William Q., "Two-sided tolerance intervals for members of the (log)-location-scale family of distributions" (2018). Statistics Publications. 281.
https://lib.dr.iastate.edu/stat_las_pubs/281
Comments
This is an Accepted Manuscript of an article published by Taylor & Francis as Yuan, Miao, Yili Hong, Luis A. Escobar, and William Q. Meeker. "Two-sided tolerance intervals for members of the (log)-location-scale family of distributions." Quality Technology & Quantitative Management 15, no. 3 (2018): 374-392. DOI: 10.1080/16843703.2016.1226594. Posted with permission.