Statistical Methods for Probability of Detection in Structural Health Monitoring

Thumbnail Image
Date
2019-09-29
Authors
Meeker, William
Roach, Dennis
Kessler, Seth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Meeker, William
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
StatisticsCenter for Nondestructive Evaluation (CNDE)
Abstract

There is much interest in the potential to use Structural Health Monitoring (SHM) technology to augment traditional Nondestructive Evaluation (NDE) methods to improve safety, increase asset availability, and reduce maintenance and inspection costs. SHM has the potential to be used in many areas of application including critical components in aircraft and pipelines. Probability of detection (POD) plays a critical role in aircraft structural integrity programs. As such, there has been a high interest in developing methods that can be used to assess POD in SHM applications. In contrast to traditional NDE laboratory experiments to assess POD that involve a set of specimens with cracks, SHM sensors are fixed and SHM data are acquired over time as cracks grow or otherwise evolve. Traditional statistical methods for assessing POD (e.g., as described in MIL-HDBK 1823A 2009) have to be extended to properly handle repeated-measures data. This purpose of this paper is to review the basic statistical concepts of probability of detection (POD) and to show how these concepts can and should be applied to SHM POD studies by modifying and extending existing methods for estimating POD. The methods presented here are applicable when there is a scalar damage index or other response that will be used to make a detect decision. The paper compares a simple model based on length at detection and a random effects model to describe repeated measures data.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections