Agronomic and Economic Performance Characteristics of Conventional and Low-External-Input Cropping Systems in the Central Corn Belt

Thumbnail Image
Date
2008-01-01
Authors
Liebman, Matthew
Gibson, Lance
Sundberg, David
Heggenstaller, Andrew
Westerman, Paula
Chase, Craig
Hartzler, Robert
Menalled, Fabian
Davis, Adam
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Dixon, Philip
University Professor
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
StatisticsAgronomy
Abstract

We conducted a 9-ha field experiment near Boone, IA, to test the hypothesis that yield, weed suppression, and profit characteristics of low-external-input (LEI) cropping systems can match or exceed those of conventional systems. Over a 4-yr period, we compared a conventionally managed 2-yr rotation system {corn (Zea mays L.)/soybean [Glycine max (L.) Merr.]} with two LEI systems: a 3-yr corn/soybean/small grain + red clover (Trifolium pratense L.) rotation, and a 4-yr corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa rotation. Synthetic N fertilizer use was 59 and 74% lower in the 3- and 4-yr systems, respectively, than in the 2-yr system; similarly, herbicide use was reduced 76 and 82% in the 3- and 4-yr systems. Corn and soybean yields were as high or higher in the LEI systems as in the conventional system, and weed biomass in corn and soybean was low (≤4.2 g m−2) in all systems. Experimentally supplemented giant foxtail (Setaria faberi Herrm.) seed densities in the surface 20 cm of soil declined in all systems; supplemented velvetleaf (Abutilon theophrasti Medik.) seed densities declined in the 2- and 4-yr systems and remained unchanged in the 3-yr system. Without subsidy payments, net returns were highest for the 4-yr system ($540 ha−1 yr−1), lowest for the 3-yr system ($475 ha−1 yr−1), and intermediate for the 2-yr system ($504 ha−1 yr−1). With subsidies, differences among systems in net returns were smaller, as subsidies favored the 2-yr system, but rank order of the systems was maintained.

Comments

This is an article from Agronomy Journal 100 (2008): 600, doi:10.2134/agronj2007.0222. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections