Massively Parallel Approximate Gaussian Process Regression

Thumbnail Image
Date
2014-09-30
Authors
Gramacy, Robert
Niemi, Jarad
Weiss, Robin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Niemi, Jarad
Professor
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Statistics
Abstract

We explore how the big-three computing paradigms---symmetric multiprocessor, graphical processing units (GPUs), and cluster computing---can together be brought to bear on large-data Gaussian processes (GP) regression problems via a careful implementation of a newly developed local approximation scheme. Our methodological contribution focuses primarily on GPU computation, as this requires the most care and also provides the largest performance boost. However, in our empirical work we study the relative merits of all three paradigms to determine how best to combine them. The paper concludes with two case studies. One is a real data fluid-dynamics computer experiment which benefits from the local nature of our approximation; the second is a synthetic example designed to find the largest data set for which (accurate) GP emulation can be performed on a commensurate predictive set in under an hour.

Comments

This is an article from SIAM/ASA Journal on Uncertainty Quantification 2 (2014): 564, doi: 10.1137/130941912. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections