Impact of carprofen administration on stress and nociception responses of calves to cautery dehorning

Thumbnail Image
Date
2016-02-01
Authors
Stock, M. L.
Barth, L. A.
Van Engen, Nicholas
Millman, Suzanne
Gehring, R.
Wang, Chong
Voris, E. A.
Wulf, Larry
Labeur, Lea
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

History
The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence
1999–present

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Organizational Unit
Veterinary Clinical Sciences
The mission of the Veterinary Clinical Sciences Department and the Veterinary Medical Center is to be strong academically, to provide outstanding services, and to conduct research in the multiple areas of Veterinary Clinical Sciences. Our goals are to teach students in the multiple disciplines of Veterinary Clinical Sciences, to provide excellent veterinary services to clients, and to generate and disseminate new knowledge in the areas of Veterinary Clinical Sciences. Our objectives are to provide a curriculum in the various aspects of Veterinary Clinical Sciences which ensures students acquire the skills and knowledge to be successful in their chosen careers. We also strive to maintain a caseload of sufficient size and diversity which insures a broad clinical experience for students, residents, and faculty. In addition, we aim to provide clinical veterinary services of the highest standards to animal owners and to referring veterinarians. And finally, we strive to provide an environment and opportunities which foster and encourage the generation and dissemination of new knowledge in many of the disciplines of Veterinary Clinical Sciences.
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
Biomedical SciencesVeterinary Clinical SciencesVeterinary Diagnostic and Production Animal Medicine
Abstract

The objective of this study was to investigate the effects of carprofen administered immediately before cautery dehorning on nociception and stress. Forty Holstein calves aged approximately 6 to 8 wk old were either placebo treated and sham dehorned (n = 10) or cautery dehorned following administration of carprofen (1.4 mg/kg) subcutaneously (n = 10) or orally (n = 10) or a subcutaneous and oral placebo (n = 10) in a randomized, controlled trial. All animals were given a cornual nerve block using lidocaine before dehorning. Response variables including mechanical nociception threshold, ocular temperature, heart rate, and respiratory rate were measured before and following cautery dehorning for 96 h. Blood samples were also collected over 96 h following dehorning and analyzed for plasma cortisol and substance P concentrations by RIA. Plasma carprofen concentration and ex vivo PGE2 concentrations were also determined for this time period. Average daily gain was calculated for 7 d after dehorning. Data were analyzed using a linear mixed effects model with repeated measures, controlling for baseline values by their inclusion as a covariate in addition to planned contrasts. Dehorning was associated with decreased nociception thresholds throughout the study and a stress response immediately after dehorning, following the loss of local anesthesia, and 48 h after dehorning compared with sham-dehorned calves. Carprofen was well absorbed after administration and reached concentrations that inhibited ex vivo PGE2 concentrations for 72 h (subcutaneous) and 96 h (oral) compared with placebo-treated calves (P < 0.05). Carprofen-treated calves tended to be less sensitive (P = 0.097) to nociceptive threshold tests. Overall, at the dosing regimen studied, the effect of carprofen on sensitivity and stress following cautery dehorning was minimal. Consideration of route of administration and dose determination studies may be warranted.

Comments

This article is from Journal of Animal Science 94 (2016); 542, doi: 10.2527/jas2015-9510. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections