Persistent Colonization of Sheep by Escherichia coli O157:H7 and Other E. coli Pathotypes

Thumbnail Image
Date
2000-11-01
Authors
Cornick, Nancy
Booher, Sheridan
Casey, T. A.
Moon, Harley
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Cornick, Nancy
Associate Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Microbiology and Preventive Medicine
Abstract

Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coliO157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 107 or 1010CFU/strain/animal. The other strains were given only at 1010CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 107 or 1010 CFU. One of the ETEC strains also persisted when inoculated at 1010 CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 107 CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes ofE. coli.

Comments

This article is from Applied and Environmental Microbiology 66 (2000): 4926, doi:10.1128/AEM.66.11.4926-4934.2000.

Description
Keywords
Citation
DOI
Copyright
Collections